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SUMMARY 
The sound propagation through a nonuniform turbulent jet flow field is studied by means of a system of 
linearized equations governing the acoustic variables. These equations depend on the fluctuating flow-field 
variables which can be prescribed by experimental results. It is shown that the correlations of the acoustic 
variables depend throughout the flow field on the space-time correlation of the turbulent velocities and on 
the mean flow variables and their gradients. 

1. Introduction 

Previous work by Liu and Maestrello [1] on sound propagation through a jet flow field 
containing gradients of  mean velocities and pressure indicates that in order to better 
estimate the directional redistribution of acoustic energy the fluctuations in pressure and 

velocities have to be considered. These fluctuations, caused by the random inhomogeneity 
of  the turbulent field in the jet, lead to a random variation of the refractive index, as 
previous papers by Lighthill [2], Kraichnan [3], and Batchelor [4] indicate. This causes a 

redistribution of  acoustic energy, in addition to and in association with refraction and 
convection effects. 

Historically, the scattering problem has been notoriously difficult. In a jet the turbulent 

field is nonisentropic, and the turbulent and acoustic intensities are not weak, as required 
for Born's approximation. In addition, one has to solve for multiple scattering effects due 

to the nonhomogeneous volume of turbulence in the jet. Recently, Crow [5] and Howe [6] 
extended the knowledge in this field. Crow proposed a visco-elastic theory applicable to 
fields whose wavelengths greatly exceed the correlation scale of  the turbulent motions, 
without accounting for multiple scattering effects. On the other hand, Howe accounted for 

* The contributions to this paper by this author are a result of work performed under NASA Grant NGR 
47-102-001. 
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multiple scattering under specialized conditions. He considered the case where the fluc- 
tuations of the media are caused by variations in temperature fluctuations in space and 
time producing a random fluctuation in the speed of sound. In general, however, the 
problems of turbulent scattering were confined to problems involving inhomogeneities in 
space alone. 

The present work examines the problem of scattered sound as a propagation phenomenon. 
Information about the turbulent and mean flow variables are to be deduced from measure- 
ments of spatial, temporal, and spatial-temporal variations through the jet flow field. The 
governing equations for the mean and fluctuating acoustic variables are derived. The 
former are more general than those used by Schubert [7] or Liu and Maestrello [1] since no 
assumptions are imposed to reduce the system of equations to a single convective wave 
equation for the pressure. The equations governing the fluctuating acoustic variables are 
recast in terms of correlations of both fluctuating flow and acoustic variables. 

The necessary correlations of the turbulent flow field are to be deduced from experi- 
mental data which has been obtained by Maestrello, et al. [8]. 

2. Governing equations 

The basic governing equations that describe the propagation of sound through a jet flow 
field are the inviscid equations of motion. The independent variables are the cylindrical 
coordinates 2, ~, and 0 (Fig. 1) and the time L The dependent variables are the velocity 
components (~, ~, if) in the (2, P, 0) direction, the density t~, and the pressure i0. All variables 
are nondimensionalized with respect to jet exit conditions: 

(u, v, w) = (~t/~ e, v/aE, u~/~F), p = P/fie, P = P/PEaE, (1) 

(x, r, O) = (2/ao, P/do, 0), t = ~ / a o ,  

where d o is the exit diameter, fie the mean jet exit density and 8E the mean jet exit speed 
of sound. 

In terms of the nondimensional variables on the left-hand side of Equation (1), the 
governing equations are: 

at + a l  -~x + e l  -g-r + cl  - , T 0 - +  J9,4 = 0, (2) 

Figure 1. 
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where 

q~r = (p, u, v, w, p), 

u o o lj \ v o o 
A 1 = 0 u 0 0 , B 1 = 0 v 0 1/p , 

O O u  O O v ~ /  

yp 0 0 0 Vp 0 

Cl 
o o oo)  
w 0 0 0 0 0 0 
0 w 0 D t 0 0 - w  0 ~ ~ 

0 0 W 1/p ~' ~ 0  0 0 ~ 0 

0 0 ~p 0 0 0 ~,v 

(3) 

Let ~ be due to the mean flow and ~b' be due to the fluctuating flow due to turbulence. 
The word mean is used in the usual sense, that is, time average over the time scale of the 
turbulence. Thus the mean of a fluctuating flow variable vanishes. The perturbation due 
to the addition of a weak acoustic source is denoted by q~. 

The dependent variables are then written as the sum of three components, for example, 

q~ = ~ + qY + qS. (4) 

The nonlinear governing equation (2) can be linearized due to the assumption 

Iq~l/l~ + 4'1 = 0 ( 0  < 1. (5) 

The leading term gives the governing equation for (~ + qY) which is the same as that for 
qS, that is, Equation (2). Note that the mean of this equation yields the standard equation 
for q5 with qS' appearing in the Reynolds stress term. The next order equation, which is 
O(Iq~l/l~ + q~'l), governs ~ and is given by: 

8q5 8~ 8q5 1 8~ 8(~ + q~') 8(q5 + ~b') 
O--t- q- A2 ~X  -]- B2 ~r  q- c2 - -  - -  q- A3 -k B 3 

r O0 8x Or 

-[- C3 ~(~ -1- d~') rdO + D3(~ + qY) = 0, (6) 

where A2, and so forth, are the matrices (3) with the elements replaced by the corresponding 
component of (~ + ~b'), and A 3, and so forth, are the matrices (3) with the elements 
replaced by the corresponding component of q~ with the exception that lip is replaced 
by - f i / ~  + p,)Z. 

The fluctuating flow field, described by qS', is, of course, time dependent. However, the 
time scale of the turbulence is different from that of the source. A simple comparison of 
the orders of magnitude of the frequencies evidences the different time scales. The scale 
of the fluctuating flow frequency is given by mr = g/l where l is the length scale of the 
turbulence in the direction of if, and g is the largest component of the mean flow velocity. 
The scale of the frequencies of the periodic acoustic sources is given by co = ~/d o. Since 
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the jet is subsonic g < ~. In general l > do. Therefore co r ~ r so that in the scale of 
the acoustic sources, the turbulence appears to be steady. If we denote a as the time scale 
of the turbulence, then for an axially symmetric jet 

,/,' = , ~ ' ( x ,  r,  a) 

and therefore is not a function of t. 
Equation (6) is linear in ~(x, r, O, cr, t) with coefficients independent of t. Therefore, 
can be represented as: 

= ~(x, r, 0, ~ ) d  ~'. 

Substituting into Equation (6) and factoring e i~ from all terms results in the governing 
equation for O which is given by Equation (6) with q~ replaced by ~ and O/~t replaced by 
ico + ~/~a. 

A further simplification can be effected if I~b'/q~l = O(a) is small. However, the amplitude 
of the point source is much smaller than the amplitude of the turbulent flow fluctuations, 
that is, 

~ a .  

Therefore, the point source will not change the characteristics of the turbulent flow field. 
Equation (6) has an error of o(~a), while Equation (2), the equation governing (~ + ~b'), 
includes all terms independent of e. The acoustic amplitude variable is now written as 

~(x, r, 0, G) = (p(x, r, 0) + ~'(x,  r, 0, a) (7) 

where ff denotes the mean of ~ over the turbulent time scale and the mean of ~' vanishes. 
will represent the amplitude of the acoustic response due to the mean flow field ~, and 

~' will represent the effects of scattering due to turbulence. Consistent with the assumption 
of the order of magnitude of Iq~'/~l, it can be assumed that I0'/~1 = 0(8).  

Equation (7) is now substituted into Equation (6) for ~. Terms of O(ea 2) or higher are 
neglected. This means that products of ~' with anything except ~ and products of q~' with 
anything except ~ are neglected. Note that products of 4>' with ~ or ~b' are already included 
in the leading order equation. The resulting equation will involve products of i~ and ~, 
which are 0(5), products of ~' and ~ which are O(e<~), and products of q~' and ~ which are 
also 0(86). The equation is given by: 

60 '  
- -  + P ( ~  + O') + N(q~') = 0 (S) 
gu 

where the differential operator P has coefficients which depend on the components of ~, 
and the differential operator N has coefficients which depend on ~ and t~, the latter ap- 
pearing linearly. Appendix I contains a detailed description of P and N. It is important to 
notice that P and N are independent of fluctuating variables so that Equation (8) is linear 
in the fluctuating variable of the flow, ~b', and of the acoustic response, ~'. Therefore, if 
we take the mean over the turbulent time scale of Equation (8), the result is the equation 
governing ~: 

n~ = 0. (9) 
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This is the equation governing the problem considered by Schubert [7] and Liu and 
Maestrello [1], among others, and which is here placed in the proper context within a 
scattering problem. Substitution of Equation (9) into Equation (8) results in the governing 
equation for ~k': 

P~' = - N r  (10) 

where the operator N depends on the solution of Equation (9), and where the ~/aa term is 
of higher order when compared to the ico term of P. 

3. Discussion of governing equations 

In order to solve Equation (9) for 5, the solution for r is needed to evaluate the coefficients 
in the operator P. To avoid solving the nonlinear equations governing ~, measured values 
are used. A detailed set of measurements and resulting curve fits have been presented for a 
subsonic jet by Liu and Maestrello [1 ]. These were used to evaluate P. Less realistic empirical 
data were used by Schubert [7] for the same purpose. Then various restrictive assumptions 
were made in order to reduce Equation (9) into a single equation for the pressure. Numerical 
solutions were then obtained by both Liu and Maestrello [1] and Schubert [7]. 

Equation (10) also requires knowledge of the mean flow field in order to evaluate the 
coefficients of P. In addition, 5 must be known in order to evaluate the coefficients of N. 
Therefore, Equation (9) has to be solved before Equation (10) canbe considered. Finally, 
~b' must be known in order to evaluate Nr This is especially troublesome, since the 
fluctuating flow variable q7 cannot, in general, be measured directly, and since an analytic 
or numerical solution for a realistic jet does not at present exist. Therefore, since knowledge 
of the primitive variable r is not available, Equation (10) will be modified to relate the 
correlation functions of ~' to those of r The main thrust of this work is to show how the 
many spectral properties that can be obtained from experimental data can be used to obtain 
the scattering of an acoustic wave by a turbulent flow field. 

The governing system of equations for t~, Equation (9), is elliptic. Since the mean flow 
field used to evaluate the coefficients is for an axially symmetric jet with ~ = 0, the five 
scalar equations represented by Equation (9) can be reduced to four equations. The solution 
of the 0 momentum equation and the homogeneous boundary conditions on 54 is 5,~ = 0 
where 54 is the component of r corresponding to ~. Then the four remaining equations 
are independent of 0 and the dependent variables are (51, 52, 53, 55) which correspond to 
(fi, ~, ~, p). The inhomogeneous nature of Equation (10) implies that the component of if' 
corresponding to ~ will not vanish. However, since all variables are independent of 0, 
this component will be uncoupled from the other components, again resulting in a system 
of four equations. 

4. Governing equations in terms of correlation 

Equation (10) is now considered. This is an elliptic system so that boundary conditions must 
be specified. They are discussed below. 

Let the pair (x, a) represent a point (x, r) at a time o-, and let the pair (4, #) represent 
some other point (4, q) at some other time #. Now write Equation (10) for both pairs of 
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coordinates: 

P~,O'(x, a) = -Nxr  a), 

P~O'(~, ~) = - N # ' ( ~ ,  D .  
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(11) 

(12) 

The subscripts on the operators P and N indicate that differentiations and matrix coefficient 
evaluations are performed in the coordinates indicated by the subscripts. Now form the 
product of Equation (11) and the conjugate transpose of Equation (12). The algebraic 
manipulations are clarified if the operator P is written in more detail. P is a first-order 
linear differential operator: 

Px~ h' = Ak 0•' + B0' (13) 

where A k and B are matrices and ~' a vector and where Xk = (X, r). Then 

0O'* (At) * + ($')*B* (ed")*- a~z 

where ( )* signifies ,,conjugate transpose". Then the product of the left-hand sides results in: 

[PJ(x ,  ~)][F:~'(r ~)]* = pA/(x, ~)~/*(~, ~)e~" 

= A~(x) T~x~ + B(x) c~t At*(~) + ~b'(x, a)~k'*(r #)B*(0 . (14) 

The operator N is also a first-order linear differential operator: 

N~r = C k ~r ~xg + Dgp' (15) 

so that the right-hand side of the above product is given by: 

[N~r ~)][N#'(~, ~)1" 

[ 

Since the coordinate pairs it and Xk are independently chosen, 

{0 } 
P~ - ~  [O'(x, ~)O'*(~, ~)1 A'*(O + O'(x, ~)O'*(~, .)B*(O 

= N x { ~  [r ~b'(x, a)r #)D*(O}. (17) 

Now the meaning of the right-side operators P* and N* is clear. They are defined by: 

YP* - Oy Ak, + yB* (18) 
OXk 

OZ 
zN* - C k* + zD*. (19) 

gXk 

and 
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With the above definitions, Equation (17) may be simply written 

P~,[~k'(x, a)~b'*(~, #)]P~ = Nx[c~'(x, a)~'*(~, #)]N~. 

Finally, take the time average over the scale of the turbulence. Since the operators P and N 
are independent of a:  

P~,[r a)tp'*(~, #)]P~' = N:,[dp'(x, a)qS'*(~, #)] N~. (20) 

The unknown in Equation (17) is the matrix of correlations $(x, a)$*(r #). The right- 

hand side is known if the correlation matrix of the fluctuating flow field, q~'(x, a)~b'*(~, #), 
is known, and if the mean acoustic variable ~ is known in order to evaluate N. 

5. Boundary conditions 

The domain of solution is the whole space (x, r). If  the jet exit is taken at x = 0, an antijet 
may be defined for x < 0 to avoid the complicated boundary conditions that result from 
considering the solid surfaces from which the jet emanates. A detailed discussion of the 
use of an antijet can be found in Schubert [7], and similar concepts were used by Liu and 
Maestrello [1]. Since the turbulence is confined to the region of the jet, it is reasonable to 
expect that a similar type of antijet mean flow will serve in the scattering problem. 

Boundary conditions for the boundary-value problems (9) and (20) must be imposed at 
r = 0 and at R = (x 2 + r2) ~ ~ ~ .  At r = 0, regularity requires that 

= ~ = 0. (21) 

For large R, the acoustic variable, q~, is governed by the wave equation, so that R ~ o% 
must be asymptotic to the solution of the wave equation representing an outgoing 

spherical wave. 
Taking the mean of Equation (21) results in 

i~3=t~ 4 = 0 ,  at r = 0 ,  

so that by using Equation (7) 

f f ~ = ~ = 0 ,  at r = 0 .  

The acoustic source is placed in the potential core of the jet. I f  it is desired to avoid the 
singularity due to the source, the source can be surrounded by a small sphere of radius R,. 
In the potential core, the fluctuating flow variable, ~b', is assumed to vanish. Therefore, if 
R~ is small enough so that the sphere lies well within the potential core, the mean acoustic 
variable, ~, evaluated at Rs, is given by ~k,, which is the corresponding variable for a point 
source in a uniform flow of the same character as that in the potential core. An analytic 
solution is available for ~ (see Moretti and Slutsky [9]). Furthermore, ~b'(R = R,) = 0. 
Note that ~s is axially symmetric and that w~ = 0, so that, as stated previously, the boundary 
conditions for i f ,  are homogeneous. 

A full description of the boundary conditions for ff is given in Liu and Maestrello [1]. 
Here it suffices to note that the governing equation for ~, Equation (9), is homogeneous 
while the boundary conditions for ~p are inhomogeneous at R = R~. On the other hand, 
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the boundary conditions for ~' are homogeneous but the governing equation (10) is in- 
homogeneous. 

It is important to note that in solving for ~p numerically, the removal of the singular 
point at the location of the source from the domain of solution is a necessity in order to 
have finite boundary values. In solving for ~b', the boundary values vanish, and therefore 
are not singular. However, the singularity is contained within ~, which appears in the 
right-hand side of the equation governing ~b'. Therefore, again the singular point is to be 
excluded from the domain of solution in order to have a bounded forcing function in 
Equation (10). 

6. Discrete analogs and method of solution 

Since Equation (9) has been solved by various authors, it is reasonable to assume that P-1, 
and therefore (P*)- ~ exists. Then, formally, the solution of Equation (20) is 

~'(x, a)~'*({,/2) = (P,)-1N,[~b'(x, a)qY*({, #)]N~(P~) -1 (22) 

and, moreover, the limit as ~ --* x of Equation (22) can be evaluated to yield 

lim ~k'(x, a)~b'*(r #) 
r 

whose real part is related to the power spectra of ~b'. The remaining question is how to 
perform the invertions appearing in Equation (22). 

Due to the complex nature of the mean flow field, the coefficient matrices appearing in P 
are complicated functions of x and r. Therefore, it is improbable that an analytic description 
of P-1 could be obtained. Therefore attention is now turned toward obtaining a discrete 
approximation to the governing system. Due to the large number of unknowns, a higher 
order numerical scheme should be used. This may be either a finite-difference or a finite- 
element approximation. In either case, the discrete approximation to the operator P is a 
matrix which is denoted by ~ .  In the finite-difference case, ~ will operate on discrete values 
of the unknown variable. If a Galerkin finite-element approach is used in conjunction with 
cubic B-splines, the discrete operator ~ will operate on weight functions from which the 
unknown variable can be obtained. In either case, inhomogenities in the differential equa- 
tion or the boundary conditions appear in the discrete system as known inhomogeneous 
terms. Then, the discrete version of Equation (9) with appropriate boundary conditions can 
be expressed as 

~ _  = f .  (23) 

The solution to this discrete system is then 

~b = ~ - a f ,  (24) 

so that the discrete analog to P-1 is then ~-1 .  Here the reduced operator P is being 
considered, that is, the 0 momentum equation has been uncoupled from the remaining 
four equations. The inversion of ~ and the subsequent evaluation of t~-~f is equivalent 
to solving the problem considered by Liu and Maestrello [1]. The vector f is related to the 
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boundary conditions. In practice, N -  ~ would not be calculated, but more efficient means 
of solving the algebraic system (23) would be employed. 

Now consider obtaining a solution to a discrete approximation of Equation (20), that is, 
a discrete approximation of Equation (22). First, consider the discretization of the operators 
P~ and N~. Then 

&{~b'(xj, o-)~'*(~, #)P~} -- Mr~,{~'(x,, o')(fl'*(~, #)N~}. 

The operator ~,, is a matrix, as is ~ ,  the discrete approximation to N,. The subscripts 
j and n indicate a grid point of the discretization of the domain of solution. The number 
of grid points is assumed to be J. The dimension of ~ and aV" is the product of the number 
of equations, four, by the number of grid points, J. The operand of ~ is the matrix which 

consists of a column of J 4 x 4 matrices, each of which is the matrix O'(xj, a)~p*(~, #) 
operated on by the differential right-side operator P~. Similarly for the operand of d/'~. 
These operands are a function of 4. Now a discretization in ~ space must be obtained. 
The result is: 

~{~//(xj, O')~'*({k, # ) } ~  = ./V'~{~b'(x,, ~)q~'*({h, #)}d~'. (25) 

Now all operators and operands are matrices, and operator inverses become simply matrix 
inverses. The subscripts k and h indicate a grid point of the discretization of the solution 
domain in { coordinates. The turbulent flow correlations need to be known at discrete 

points xj with respect to other discrete points {g. The dimensions of ~ ,  aft, ~'~'*, and 

q~'~'* are 4J, that is, each is a 4J x 4J complex matrix. 

In principle, the solution is now at hand. With the correlation matrix qS'(x,, o-)q~'*({h, #) 
known, the right-hand side of Equation (25) can be evaluated by two matrix multiplications. 
Then the multiplication on the left by ~ -* ,  and on the right b y / ~ - 1  results in isolation 
of the unknown matrix 

r ~)0'*(~, #) 

where 

~9'(xj, o-)~'*(~k, p) = ~a~-ad~b,(x,, cr)q~,.(~a, #)~4/'~'(~')-1, (26) 

or, in subscript notation 

~]l~]tt* --I ! t*  * * --1 
jLUk = ( ~ l j )  J~ / ' ln~n(Ph ~ P m h ( ~ m k )  , (27) 

where repeated indices are summed. 
Some simplification in the computation of the right-hand side of Equation (27) is possible. 

If either n or k represents a point outside the jet, then ~b'~b~* vanishes since outside the jet 
there is no turbulence. Furthermore, if n and h represent two points which are far apart, 

~b',~'* again vanishes, since distant points are weakly correlated. Finally, many elements n'k'h 

of the 4 x 4 matrix ~b~b~* vanish since different components of ~b' may be weakly correlated. 
i l t l l l t  tge i l t t~l t t*  In general not all of vjV'k will be of interest. If only some elements of VjVk are of 
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interest, great savings can be effected in the computations of Equation (27) since for each 

desired element of ~bjO k '  '* only one row of #t~ 1 and one column of (Nm*k)- 1 need be known. 
This is easy to see if Equation (27) is thought of as the multiplication of matrices. If  only 

dt %/tt* t t* element of ~'i~'k is desired, then only that row of (~ , j ) - i  and that column of JV'z,~b,q5 h 
* * - 1  x JVmh(~mk ) which correspond to the row and column of the desired element need be 

known. In addition, to know one column of the latter matrix, only the corresponding 
J~ ql/* column of (~*k)-1 need be known. Therefore to compute one element of ~'j~'k only one 

row of (~lj) -1 and one column of (~*k) -1 need be known. But a column of (~*k) -1 is 
just the complex conjugate of a row of (~tj) -1 since (~*k) -1 = (~m~)*" Therefore, if a 

d~ ' J d  * diagonal element of ~'j~'k is desired, as probably would be the case, only one row of the 
matrix inverse need be known. This is, of course, much less expensive to obtain than the 
whole inverse. 

7. Conclusion 

This paper provides the basic theoretical analysis and mathematical formulation of the 
problem of sound propagation through a subsonic turbulent jet. The effects of convection, 
refraction and scattering are included, and therefore is an extension of previous work in 
the field. 

It is shown that in order to use experimentally measurable quantities, the governing 
equations for the acoustic variables must be recast in terms of space-time correlations. The 
equations in terms of correlations are derived. These equations and their discrete analogs 
are formally inverted to show that the correlations of the acoustic variables depend on the 
correlations of the turbulent flow variables (and not on the primitive turbulent flow vari- 
ables themselves) as well as the mean flow field and the mean acoustic variables. 

While this work is concerned with subsonic jets, a similar approach may be taken for the 
propagation of sound through other turbulent flow fields, so long as the relative magnitudes 
of the mean, turbulent and acoustic fields are similar to those in a turbulent jet. 

Appendix 1. The operators P and N 

The operator P is given by: 

P = ico + ~ 1 - : -  + a2 --:- + as 
O X  O r  

where (i ooi  ti0 001 0 0 1 / ~  ~ 0 0 0 
0 ~ 0 ~2 = 0 ~ 0 1/~ 
0 0 ~ 0 0 ~ 0 
?p 0 0 0 ?~ 0 
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and 

~3 -~" ( ( ~  + (r~),/r) fi~ (rp)dr 0 0 \ 
- G / P  2 G G 0 0 

o PdP ~ G ~ o o 
0 0 ~/r 0 J 
p~ (r~),/r 0 ~ (~  + (r~),/r)/ 

The operator N is given by: 

N =/~ ~x  + /h  G-r + & 

where (i 00i) (!0 00) U 0 0 - -  / p2  /3 0 0 0 

0 ff 0 f12= 0 v_ 0 -g /p2  
0 0 u 0 0 v 0 
?p 0 0 _ 0 ?p 0 v_ 

and 

f13 ( (~x  + (rv_)r/r P_x (rP_)rlr 0 0 \ 

( - e x  + pG/P)/P 2 u~ u, o o ) ( - e ,  + eP,/P)/~ 2 ~_~ ~_, o o 
0 0 v_/r 0 
p_~ (rp)dr 0 ? ~  + (rv_),/r)/ 

and where ff = (p, u, v, w, p_). Subscripts indicate differentiations. Note that ~ = 0 and 
w = 0, as well as the independence of 0 of  the problem is built into the above definition. 

When ~k is treated as a four-component vector without the component  corresponding 
to w, then the fourth row and fourth column of the above matrices should be omitted. 
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